miércoles, 24 de abril de 2013

Porcentajes


Porcentaje




El signo porcentaje.En matemáticas, un porcentaje es una forma de expresar un número como una fracción que tiene el número 100 como denominador. También se le llama comúnmente tanto por ciento, donde por ciento significa “de cada cien unidades”. Se usa para definir relaciones entre dos cantidades, de forma que el tanto por ciento de una cantidad, donde tanto es un número, se refiere a la parte proporcional a ese número de unidades de cada cien de esa cantidad. el porcentaje sirve también para sacar un porciento de una cantidad ...
El porcentaje se denota utilizando el símbolo %, que matemáticamente equivale al factor 0,01 y que se debe escribir después del número al que se refiere, dejando un espacio de separación.1 Por ejemplo, "treinta y dos por ciento" se representa mediante 32 % y significa 'treinta y dos de cada cien'. También puede ser representado:

 





y, operando:


El 32 % de 2000, significa la parte proporcional a 32 unidades de cada 100 de esas 2000, es decir:

640 unidades en total.
El porcentaje se usa para comparar una fracción (que indica la relación entre dos cantidades) con otra, expresándolas mediante porcentajes para usar 100 como denominador común. Por ejemplo, si en un país hay 500 000 enfermos de gripe de un total de 10 millones de personas, y en otro hay 150 000 enfermos de un total de un millón de personas, resulta más claro expresar que en el primer país hay un 5 % de personas con gripe, y en el segundo hay un 15 %, resultando una proporción mayor en el segundo país.
El símbolo % es una forma estilizada de los dos ceros. Evolucionó a partir de un símbolo similar sólo que presentaba una línea horizontal en lugar de diagonal (c. 1650), que a su vez proviene de un símbolo que representaba "P cento" (c. 1425).
Signos relacionados incluyen ‰ (por mil) y e (por diez mil, también conocido como un punto básico), que indican que un número se divide por mil o diez mil, respectivamente.

El tanto por ciento como fracción
El tanto por ciento se divide entre 100 y se simplifica la fracción. Ejemplo:
Para saber como se representa el 10 % en fracción se divide y luego se simplifica:


El porcentaje
La fracción común se multiplica por 100 y se resuelve la operación, como resultado será el porcentaje.
Ejemplo: Para representar 1/10 como un porcentaje se hace la operación siguiente:


Obtener un tanto por ciento de un número

Para obtener un tanto por ciento de un número simplemente se multiplica. Por ejemplo, el 25 % de 150 es .
Una forma equivalente de tratar esta operación es considerar que se multiplica por la cifra y se divide por cien (pues 0.01 = 1/100).
Alternativamente, en un método muy habitual antaño, se construye una regla de tres simple directa. Así, para calcular el 25% de 150 se hace la regla de tres: simplemente se multiplica cruzado y divide por el que queda solo o en conjunción con el restado.



Por tanto: 37.5 es el 25% de 150


Referencias
 «Aunque el símbolo % [...] se ve frecuentemente escrito sin separación de la cifra que lo precede, la norma establecida por la Oficina Internacional de Pesos y Medidas determina que se escribe precedido de un espacio», Ortografía de la lengua española, 2010, p. 590. Antes de la última Ortografía, la Asale recomendó no dejar espacio (Sección Números del Diccionario panhispánico de dudas).


Porcentajes (%)
Porcentaje quiere decir partes por 100
Cuando dices "por ciento" en realidad dices "por cada 100"


Así que 50% quiere decir 50 por 100
(50% de la caja es verde)

25% quiere decir 25 por 100
(25% de la caja es verde)


Ejemplos: Porcentajes de 80



100% of 80 is 100/100 × 80 = 80
So 100% means all.

50% of 80 is 50/100 × 80 = 40
So 50% means half.

5% of 80 is 5/100 × 80 = 4
So 5% means 5/100ths.

Usando porcentajes
Como "por ciento" quiere decir "por cada 100" deberías pensar siempre que "hay que dividir por 100"
Así que 75% quiere decir 75/100
100% es 100/100, o exactamente (100% de cualquier número es el mismo número)
200% es 200/100, o exactamente (200% de cualquier número es el doble del número)
Usa la barra de la izquierda y experimenta un poco (por ejemplo, ¿cuánto es el 60% de 80?)
Un porcentaje también se puede escribir como un decimal o una fracción


La mitad se puede escribir...


Como porcentaje:
50%
Como decimal:
0,5
Como fracción:
1/2
Algunos ejemplos detallados

Calcula 25% de 80
25% = 25/100

(25/100) × 80 = 20
Así que 25% de 80 es 20

Un Skateboard tiene una rebaja de 25%. El precio normal es $120. Calcula el nuevo precio

Calcula 25% de $120
25% = 25/100

(25/100) × $120 = $30
25% de $120 es $30
Así que la reducción es $30
Quita la reducción del precio original

$120 - $30 = $90

El precio del Skateboard en rebajas es $90
El nombre

"Por ciento" viene del latín Per Centum. La palabra latina Centum quiere decir 100, por ejemplo "centuplicar" es multiplicar por 100.

El porcentaje o tanto por ciento (%), es una de las aplicaciones más usadas de las proporciones o razones.
El porcentaje es una forma de comparar cantidades, es una unidad de referencia que relaciona una magnitud (una cifra o cantidad) con el todo que le corresponde (el todo es siempre el 100), considerando como unidad la centésima parte del todo.                                              
Ejemplos: 
1 centésimo  = 

5 centésimos =  

50 centésimos = 
Nota importante. No olvidar que las fracciones deben expresarse siempre lo más pequeñas posible, deben ser fracciones irreductibles.
¿Qué significa 50 %?: Significa que de una cantidad que se ha dividido en cien partes se han tomado 50 de ellas, o sea, la mitad.     
¿Qué significa 25 %?: Significa que de un total de 100 partes se han tomado 25, o sea ¼ ( 25/100 al simplificar por 5, se reduce a  ¼).
Cálculo de Porcentaje
El Porcentaje o Tanto por ciento se calcula a partir de variables directamente proporcionales (significa que si una variable aumenta la otra también aumenta y viceversa).
En el cálculo intervienen cuatro componentes:
                            Cantidad Total             ----             100 %
                           Cantidad Parcial           ----            Porcentaje Parcial

Ejemplo
(Cantidad total)       $ 1.000  -   equivale al   -     100 % (porcentaje total)
(Cantidad parcial)    $  500    -   equivale al   -      50  %  (porcentaje parcial)

Existen tres situaciones o tipos de problemas que pueden plantearse. Éstos son :
1.- Dada una cantidad total, calcular el número que corresponde a ese porcentaje (%) parcial :

Ejemplo:    ¿Cuál (cuanto) es el 20% de 80?

Cantidad
Porcentaje
Total
80
100
Parcial
x
20

Para resolverlo, se hace:
80/x = 100/20
Resolvemos la incógnita  (x):
x = 80*20/100
Haciendo la operación, queda:
x = 1.600/100
Simplificando, queda:
    x = 16
Respuesta: el 20 % de 80 es 16. 

2.- Calcular el total, dada una cantidad que corresponde a un porcentaje de él.
Ejemplo:   Si el 20 % de una cierta cantidad total es 120 ¿Cuál es el total?

Cantidad
Porcentaje
x
100
120
20

Para resolverlo, se hace:
x/120 = 100/20
Resolvemos la incógnita  (x):
x = 12.000/20
Haciendo la operación, queda:
x = 600
Simplificando, queda:  
Respuesta: 120 es el 20 % de un total de 600.

3.- Dado el total y una parte de él calcular que % es esa parte del total.
Ejemplo:  ¿Qué porcentaje es 40 de 120?

Cantidad
Porcentaje
120
100
40
x

Para resolverlo, se hace:
120/40 = 100/X
Resolvemos la incógnita  (x):
X = 100*40/ 120
Haciendo la operación, queda:
X = 4.000/120
Simplificando y haciendo la división, queda:
X = 33,33
Respuesta: 40 es el 33,33 % de 120.


Bibliografía :

http://www.profesorenlinea.cl/matematica/Porcentaje_calcular.html

martes, 16 de abril de 2013

CONJUNTOS


DEFINICIÓN DE CONJUNTOS
Un conjunto se determina por extensión cuando se nombran todos sus elementos, y por comprensión cuando se da la característica común de sus elementos.
Los conjuntos también se pueden definir por comprensión utilizando la notación simbólica:
A = {x | x   N, 4 < x < 11}
Se lee: A es un conjunto formado por todos los elementos x tal que x es un número natural mayor que 4 y menor que 11.
DEFINICION



La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.
En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.
La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:

{ a, b, c, ..., x, y, z}

Como se muestra el conjunto se escribe entre llaves ({}) , o separados por comas (,).
El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.
 Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }
 En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto { b, b, b, d, d } simplemente será { b, d }.




MEMBRESIA
Los conjuntos se denotan por letras mayúsculas : A, B, C,... por ejemplo:
A={ a, c, b }
B={ primavera, verano, otoño, invierno }
El símbolo Î indicará que un elemento pertenece o es miembro de un conjunto. Por el contrario para indicar que un elemento no pertenece al conjunto de referencia, bastará cancelarlo con una raya inclinada / quedando el símbolo como Ï .
 Ejemplo:
Sea B={ a, e, i, o, u }, a Î B y c Ï B




SUBCONJUNTO
Sean los conjuntos A={ 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 }
En este caso decimos que B esta contenido en A, o que B es subconjunto de A. En general si A y B son dos conjuntos cualesquiera, decimos que B es un subconjunto de A si todo elemento de B lo es de A también.
Por lo tanto si B es un subconjunto de A se escribe B Ì A. Si B no es subconjunto de A se indicará con una diagonal Ë .
Note que Î se utiliza solo para elementos de un conjunto y Ì solo para conjuntos.




UNIVERSO O CONJUNTO UNIVERSAL
El conjunto que contiene a todos los elementos a los que se hace referencia recibe el nombre de conjunto Universal, este conjunto depende del problema que se estudia, se denota con la letra U y algunas veces con la letra S (espacio muestral).
Por ejemplo si solo queremos referirnos a los 5 primeros números naturales el conjunto queda:
U={ 1, 2, 3, 4, 5 }

Forma alternativa para indicar conjuntos de gran importancia:
  • Conjunto de números naturales (enteros mayores que cero) representados por la letra N donde
N={ 1, 2, 3, .... }
  • Conjunto de números enteros positivos y negativos representados por la letra Z donde
Z={..., -2, -1, 0, 1, 2, ... }
  • Conjunto de números racionales (números que se representan como el cociente de dos números enteros {fracciones }). Estos números se representan por una Q
  • Conjunto de números irracionales (números que no puedan representarse como el cociente de dos números enteros) representados por la letra I.
  • Conjunto de los números reales que son los números racionales e irracionales es decir todos, representados por R.

Todos estos conjuntos tienen un número infinito de elementos, la forma de simbolizarlos por extensión o por enumeración es de gran utilidad cuando los conjuntos a los que se hace referencia tienen pocos elementos para poder trabajar con ellos se emplean la notación llamada comprehensión.
Por ejemplo, la denotar el conjunto de los números naturales menores que 60. Aquí U es el conjunto N y se tiene una propiedad que caracteriza a los elementos del conjunto: ser menores que 60.

Para indicar esta situación empleamos la simbología del álgebra de conjuntos:
{ x/x Î N ; x<60 }
En esta expresión se maneja un conjunto de x que pertenece a los números naturales (N) y además que los valores de x son menores que 60.

Ahora si se desea trabajar con conjuntos que manejen intervalos estos pueden ser representados por medio de una expresión algebraica; supongamos que se desea expresar los números enteros (Z) entre -20 y 30 el conjunto quedaría de la manera siguiente:
{ x/x Î Z ; -20 £ x £ 30 }

También se puede expresar el valor de un conjunto indicando la pertenencia o no pertenencia a uno diferente, por ejemplo
L={ 1, 3, 4, 6, 9 }
P={ x/x Î N ; X Ï L }
En el conjunto P se indica que los elementos x de un conjunto pertenecen a los números naturales y además x no pertenece al conjunto L.






OPERACIONES CON CONJUNTOS



UNION
La unión de dos conjuntos A y B la denotaremos por A È B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:
A È B = { x/x Î A ó x Î B }

Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }
A È B ={ 1, 3, 5, 7, 9, 10, 11, 12 }



INTERSECCION
Sean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }
Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A Ç B, algebraicamente se escribe así:
A Ç B = { x/x Î A y x Î B }
Y se lee el conjunto de elementos x que están en A y están en B.

Ejemplo:
Sean Q={ a, n, p, y, q, s, r, o, b, k } y P={ l, u, a, o, s, r, b, v, y, z }
Q Ç P={ a, b, o, r, s, y }




CONJUNTO VACIO
Un conjunto que no tiene elementos es llamado conjunto vacío ó conjunto nulo lo que denotamos por el símbolo Æ .

Por ejemplo:
Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A Ç B.
A Ç B= { }
El resultado de A Ç B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como:
A Ç B=Æ



CONJUNTOS AJENOS
Sí la intersección de dos conjuntos es igual al conjunto vacío, entonces a estos conjuntos les llamaremos conjuntos ajenos, es decir:
Si A Ç B = Æ entonces A y B son ajenos.




COMPLEMENTO
El complemento de un conjunto respecto al universo U es el conjunto de elementos de U que no pertenecen a A y se denota como A' y que se representa por comprehensión como:
A'={ x Î U/x y x Ï A }

Ejemplo:
Sea U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
A= { 1, 3, 5, 7, 9 } donde A Ì U
El complemento de A estará dado por:
A'= { 2, 4, 6, 8 }




DIFERENCIA
Sean A y B dos conjuntos. La diferencia de A y B se denota por A-B y es el conjunto de los elementos de A que no están en B y se representa por comprehensión como:
A - B={ x/x Î A ; X Ï B }

Ejemplo:
Sea A= { a, b, c, d } y
B= { a, b, c, g, h, i }
A - B= { d }
En el ejemplo anterior se observa que solo interesan los elementos del conjunto A que no estén en B. Si la operación fuera B - A el resultado es
B – A = { g, h, i }
E indica los elementos que están en B y no en A.




DIAGRAMAS DE VENN
Los diagramas de Venn que de deben al filósofo inglés John Venn (1834-1883) sirven para encontrar relaciones entre conjuntos de manera gráfica mediante dibujos ó diagramas.
La manera de representar el conjunto Universal es un rectángulo, ó bien la hoja de papel con que se trabaje.
Un ejemplo de la representación del conjunto universal se muestra como:


Los conjuntos se representan por medio de dibujos dentro del rectángulo, los aspectos de interés se resaltan sombreando las áreas respectivas. En el caso de este curso las indicaremos por medio de un color azul por ejemplo:












bibliografía:


Integrantes:
Seyra Guanilo
Rocio Gonzáles
Fiorella Marines
Yurits Rosas
Mariely Sanchez
Kiara Silva